Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 242
Filtrar
2.
Transfusion ; 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38562113

RESUMEN

BACKGROUND: We recently encountered a Rhnull phenotype proband within one family in the Chinese population. Rhnull is a rare autosomal recessive disorder characterized by the absence of the Rh antigens on the erythrocyte membrane, resulting in chronic hemolytic anemia. This study described the serological and molecular analysis of a Chinese Rhnull proband and his immediate family. METHODS: Red blood cells antigen phenotyping and antibody screening/identification were conducted. RHD, RHCE, and RHAG were analyzed using genomic DNA by polymerase chain reaction and sequence analysis. RESULTS: Serologic tests showed a D-C-E-c-e- phenotype in the proband associated with the suspicion of anti-Rh29 (titer 16). Molecular analyses showed a new mutation (c.406dupA) in exon 3 of RHAG. This duplication introduced a reading frameshift (p.Thr136AsnfsTer21). The RHAG mutation was found in the homozygous state for the proband and heterozygous state for his parents. CONCLUSION: We identified a novel RHAG mutation resulting in the Rhnull phenotype of the regulator type. Inheritance of the novel allele was shown by family study.

3.
Open Forum Infect Dis ; 11(4): ofae137, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38577029

RESUMEN

The immune mechanisms of long coronavirus disease 2019 (COVID) are not yet fully understood. We aimed to investigate the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific memory immune responses in discharged COVID-19 patients with and without long COVID symptoms. In this cross-sectional study, we included 1041 hospitalized COVID-19 patients with the original virus strain in Wuhan (China) 12 months after initial infection. We simultaneously conducted a questionnaire survey and collected peripheral blood samples from the participants. Based on the presence or absence of long COVID symptoms during the follow-up period, we divided the patients into 2 groups: a long COVID group comprising 480 individuals and a convalescent group comprising 561 individuals. Both groups underwent virus-specific immunological analyses, including enzyme-linked immunosorbent assay, interferon-γ-enzyme-linked immune absorbent spot, and intracellular cytokine staining. At 12 months after infection, 98.5% (1026/1041) of the patients were found to be seropositive and 93.3% (70/75) had detectable SARS-CoV-2-specific memory T cells. The long COVID group had significantly higher levels of receptor binding domain (RBD)-immunoglobulin G (IgG) levels, presented as OD450 values, than the convalescent controls (0.40 ± 0.22 vs 0.37 ± 0.20; P = .022). The magnitude of SARS-CoV-2-specific T-cell responses did not differ significantly between groups, nor did the secretion function of the memory T cells. We did not observe a significant correlation between SARS-CoV-2-IgG and magnitude of memory T cells. This study revealed that long COVID patients had significantly higher levels of RBD-IgG antibodies when compared with convalescent controls. Nevertheless, we did not observe coordinated SARS-CoV-2-specific cellular immunity. As there may be multiple potential causes of long COVID, it is imperative to avoid adopting a "one-size-fits-all" approach to future treatment modalities.

4.
Diab Vasc Dis Res ; 21(2): 14791641241246555, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38597693

RESUMEN

BACKGROUND: Prior studies have established a connection between folate intake and cardiovascular disease (CVD). Abdominal aortic calcification (AAC) has been introduced as a good predictor of CVD events, but no previous study has investigated the relationship between dietary folate intake and severe AAC. Therefore, the study aims to explore the association between dietary folate intake and severe AAC in the United States (US) middle-aged and elderly population. METHODS: This study employed cross-sectional data from the 2013-2014 National Health and Nutrition Examination Survey (NHANES) to examine the relationship between dietary folate intake and severe AAC. Two 24-h dietary recall interviews were conducted to assess dietary folate intake and its sources, while a DXA scan was used to determine the AAC score. To analyze the association between dietary folate intake and severe AAC, a multivariable logistic regression model was applied, and a subgroup analysis was performed. RESULTS: Our analysis utilized data from 2640 participants aged 40 years and above, including 288 individuals diagnosed with severe AAC. After adjusting for confounding factors, we observed an inverted L-shaped association between folate intake and severe AAC. Upon further adjustment for specific confounding factors and covariates, the multivariable-adjusted odds ratios (ORs) and corresponding 95% confidence intervals (CIs) for the second, third, and fourth quartiles of folate intake, using the first quartile as the reference, were as follows: 1.24 (0.86-1.79), 0.86 (0.58-1.27), and 0.63 (0.41-0.97), respectively. Subgroup analysis results were consistent with the logistic regression models, indicating concordant findings. Moreover, no significant interaction was observed in the subgroup analyses. CONCLUSIONS: The study findings suggest an inverted L-shaped association between dietary folate intake and severe AAC. However, additional prospective investigations are necessary to explore the impact of dietary folate intake on severe AAC in patients.


Asunto(s)
Enfermedades Cardiovasculares , Calcificación Vascular , Adulto , Persona de Mediana Edad , Humanos , Anciano , Estados Unidos/epidemiología , Encuestas Nutricionales , Ácido Fólico , Estudios Transversales , Estudios Prospectivos , Aorta Abdominal/diagnóstico por imagen , Calcificación Vascular/diagnóstico por imagen , Calcificación Vascular/epidemiología , Factores de Riesgo
5.
Environ Res ; 252(Pt 1): 118881, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38582430

RESUMEN

Nitrate reduction in bio-electrochemical systems (BESs) has attracted wide attention due to its low sludge yields and cost-efficiency advantages. However, the high resistance of traditional electrodes is considered to limit the denitrification performance of BESs. Herein, a new graphene/polypyrrole (rGO/PPy) modified electrode is fabricated via one-step electrodeposition and used as cathode in BES for improving nitrate removal from wastewater. The formation and morphological results support the successful formation of rGO/PPy nanohybrids and confirm the part covalent bonding of Py into GO honeycomb lattices to form a three-dimensional cross-linked spatial structure. The electrochemical tests indicate that the rGO/PPy electrode outperforms the unmodified electrode due to the 3.9-fold increase in electrochemical active surface area and 6.9-fold decrease in the charge transfer resistance (Rct). Batch denitrification activity tests demonstrate that the BES equipped with modified rGO/PPy biocathode could not only achieve the full denitrification efficiency of 100% with energy recovery (15.9 × 10-2 ± 0.14 A/m2), but also favor microbial attach and growth with improved biocompatible surface. This work provides a feasible electrochemical route to fabricate and design a high-performance bioelectrode to enhance denitrification in BESs.

6.
Influenza Other Respir Viruses ; 18(3): e13263, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38503498

RESUMEN

BACKGROUND: Abnormal changes of monocytes have been observed in acute COVID-19, whereas associations of monocyte count with long COVID were not sufficiently elucidated. METHODS: A cohort study was conducted among COVID-19 survivors discharged from hospital. The primary outcomes were core symptoms of long COVID, distance walked in 6 min, and lung function, and the secondary outcomes were health-related quality of life and healthcare use after discharge. Latent variable mixture modeling was used to classify individuals into groups with similar trajectory of monocyte count from discharge to 2-year after symptom onset. Multivariable adjusted generalized linear regression models and logistic regression models were used to estimate the associations of monocyte count trajectories and monocyte count at discharge with outcomes. RESULTS: In total, 1389 study participants were included in this study. Two monocyte count trajectories including high to normal high and normal trajectory were identified. After multivariable adjustment, participants in high to normal high trajectory group had an odds ratio (OR) of 2.52 (95% CI, 1.44-4.42) for smell disorder, 2.27 (1.27-4.04) for 6-min walking distance less than lower limit of normal range, 2.45 (1.08-5.57) for total lung capacity (TLC) < 80% of predicted, 3.37 (1.16-9.76) for personal care problem, and 1.70 (1.12-2.58) for rehospitalization after discharge at 2-year follow-up compared with those in normal trajectory group. Monocyte count at discharge showed similar results, which was associated with smell disorder, TLC < 80% of predicted, diffusion impairment, and rehospitalization. CONCLUSIONS: Monocyte count may serve as an easily accessible marker for long-term management of people recovering from COVID-19.


Asunto(s)
COVID-19 , Trastornos del Olfato , Humanos , Estudios de Cohortes , Monocitos , Síndrome Post Agudo de COVID-19 , Calidad de Vida , Tolerancia al Ejercicio , Pulmón , Sobrevivientes
7.
Chest ; 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38431050

RESUMEN

BACKGROUND: Corticosteroids have beneficial effects in improving outcomes in hospitalized patients with severe COVID-19 by suppressing excessive immune responses. However, the effect of corticosteroids on the humoral and T-cell responses of survivors of COVID-19 1 year after infection remains uncertain because it relates to the extent of immediate, antigen-specific defense provided by protective memory. RESEARCH QUESTION: What is the effect of corticosteroids on long-term humoral and T-cell immune responses? STUDY DESIGN AND METHODS: In this retrospective cohort study conducted at a single center, we analyzed data from a cohort who had survived COVID-19 to compare the 1-year seropositivity and titer changes in neutralizing antibodies (NAbs) and SARS-CoV-2-specific antibodies. Additionally, we evaluated the magnitude and rate of SARS-CoV-2-specific T-cell response in individuals who received corticosteroids during hospitalization and those who did not. RESULTS: Our findings indicated that corticosteroids do not statistically influence the kinetics or seropositive rate of NAbs against the Wuhan strain of SARS-CoV-2 from 6 months to 1 year. However, subgroup analysis revealed a numerical increase of absolute NAbs titers, from 20.0 to 28.2, in categories where long-term (> 15 days) and high-dose (> 560 mg) corticosteroids are administered. Similarly, corticosteroids showed no significant effect on nucleoprotein and receptor-binding domain IgG at 1 year, except for spike protein IgG (ß, 0.08; 95% CI, 0.04-0.12), which demonstrated a delayed decline of titers. Regarding T-cell immunity, corticosteroids did not affect the rate or magnitude of T-cell responses significantly. However, functional assessment of memory T cells revealed higher interferon-γ responses in CD4 (ß, 0.61; 95% CI, 0.10-1.12) and CD8 (ß, 0.63; 95% CI, 0.11-1.15) memory T cells in the corticosteroids group at 1 year. INTERPRETATION: Based on our findings, short-term and low-dose corticosteroid therapy during hospitalization does not have a significant effect on long-term humoral kinetics or the magnitude and rate of memory T-cell responses to SARS-CoV-2 antigens. However, the potential harmful effects of long-term and high-dose corticosteroid use on memory immune responses require further investigation.

8.
Emerg Microbes Infect ; : 2332667, 2024 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-38494746

RESUMEN

Clade 2.3.4.4b highly pathogenic avian influenza A(H5N1) viruses have caused large outbreaks within avian populations on five continents, with concurrent spillover into a variety of mammalian species. Mutations associated with mammalian adaptation have been sporadically identified in avian isolates, and more frequently among mammalian isolates following infection. Reports of human infection with A(H5N1) viruses following contact with infected wildlife have been reported on multiple continents, highlighting the need for pandemic risk assessment of these viruses. In this study, the pathogenicity and transmissibility of A/Chile/25945/2023 HPAI A(H5N1) virus, a novel reassortment with four gene segments (PB1, PB2, NP, MP) from North America lineage, isolated from a severe human case in Chile, was evaluated in vitro and using the ferret model. This virus possessed a high capacity to cause fatal disease, characterized by high morbidity and extrapulmonary spread in virus-inoculated ferrets. The virus was capable of transmission to naïve contacts in a direct contact setting, with contact animals similarly exhibiting severe disease, but did not exhibit productive transmission in respiratory droplet or fomite transmission models. Our results indicate that the virus would need to acquire an airborne transmissible phenotype in mammals to potentially cause a pandemic. Nonetheless, this work warrants continuous monitoring of mammalian adaptations in avian viruses, especially in strains isolated from humans, to aid pandemic preparedness efforts.

9.
Phytother Res ; 38(4): 1815-1829, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38349045

RESUMEN

Triple-negative breast cancer (TNBC) is the most aggressive and lethal clinical subtype and lacks effective targeted therapies at present. Isobavachalcone (IBC), the main active component of Psoralea corylifolia L., has potential anticancer effects. Herein, we identified IBC as a natural sirtuin 2 (SIRT2) inhibitor and characterized the potential mechanisms underlying the inhibition of TNBC. Molecular dynamics analysis, enzyme activity assay, and cellular thermal shift assay were performed to evaluate the combination of IBC and SIRT2. The therapeutic effects, mechanism, and safety of IBC were analyzed in vitro and in vivo using cellular and xenograft models. IBC effectively inhibited SIRT2 enzyme activity with an IC50 value of 0.84 ± 0.22 µM by forming hydrogen bonds with VAL233 and ALA135 within its catalytic domain. In the cellular environment, IBC bound to and stabilized SIRT2, consequently inhibiting cellular proliferation and migration, and inducing apoptosis and cell cycle arrest by disrupting the SIRT2/α-tubulin interaction and inhibiting the downstream Snail/MMP and STAT3/c-Myc pathways. In the in vivo model, 30 mg/kg IBC markedly inhibited tumor growth by targeting the SIRT2/α-tubulin interaction. Furthermore, IBC exerted its effects by inducing apoptosis in tumor tissues and was well-tolerated. IBC alleviated TNBC by targeting SIRT2 and triggering the reactive oxygen species ROS/ß-catenin/CDK2 axis. It is a promising natural lead compound for future development of SIRT2-targeting drugs.


Asunto(s)
Chalconas , Sirtuina 2 , Neoplasias de la Mama Triple Negativas , Humanos , Sirtuina 2/farmacología , Línea Celular Tumoral , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Tubulina (Proteína)/farmacología , Tubulina (Proteína)/uso terapéutico , Proliferación Celular , Apoptosis
10.
R Soc Open Sci ; 11(1): 231438, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38204781

RESUMEN

Developmental changes of facial shape are commonly investigated through geometric morphometrics. A limitation with this approach is the inability to investigate patterns of morphological changes at local scale. This could be addressed through quantifying the deformation required to deform one shape to another. This study aimed to investigate changes in mean, rate and variance of facial shape at local scale using geometric morphometrics through deformation perspective. A total of 2112 Europeans 3 to 40 years old from the three-dimensional Facial Norms project were included. Shape and rate trajectories from partial least-squares regressions revealed that the developmentally protrusive nasal bridge was due to local expansion in surrounding tissues as opposed to shape changes in nasal bridge per se. Local expansion of the supraorbital region, in particular the medial part in males, resulted in the sloping forehead and deep-situated eyes with development. Facial shape variation increased nonlinearly with age (p < 0.05), with features having larger rate of change becoming more developmentally diversified. In summary, our deformation perspective facilitates unravelling morphogenetic processes underlying shape changes. Our extended analytical scope inspires novel measures worthy of consideration while establishing facial growth charts. The analytical framework in this study is broadly applicable for analysis of shape changes in general.

11.
J Colloid Interface Sci ; 657: 664-671, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38071815

RESUMEN

Two-dimensional metal-organic frameworks are considered to be promising electrocatalytic materials due to their ultrathin lamellar structure, ultrahigh porosity and large surface area, but there are still many challenges such as the embedding of organic ligands leading to low density of active sites and poor conductivity. Herein, we synthesize two-dimensional ferrocene-based metal-organic frameworks nanosheet electrocatalysts via the one-step hydrothermal hydrogen peroxide etching method. The prepared FcNi-BDC-H2O2/NF exhibits excellent oxygen evolution reaction performance with a current density of 100 mA·cm-2 at only 258 mV and a small driving potential of 1.542 V (10 mA·cm-2) is required to achieve overall water splitting. Significantly, an overall water-cracked cell using a solar cell assembly achieves the solar hydrogen conversion efficiency of 19.5%. The introduction of high electronegativity ferrocene and the etching of H2O2 increase the Ni3+ content of FcNi-BDC-H2O2, and expose more unsaturated active sites, which improve the intrinsic activity of the catalysts and the mass transfer rate during the catalytic process. Moreover, the FcNi-BDC-H2O2/NF demonstrates significant urea oxidation reaction performance, achieving a potential of 1.35 V and producing 10 mA·cm-2. This study presents a viable approach to investigating highly efficient electrocatalysts for oxygen evolution reaction and urea oxidation reaction using MOF-based bifunctional catalysts.

12.
Cytokine ; 175: 156444, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38150791

RESUMEN

Head and neck squamous cell carcinoma (HNSCC) is the most common malignancy of the head and neck epidermis. Accumulating long non-coding RNAs (lncRNAs) have been proven to be involved in the occurrence and development of HNSCC. LncRNA long intergenic non-protein coding RNA 491 (LINC00491) has been confirmed to regulate the progression of some cancers. In our study, we aimed to explore the potential biological function of LINC00491 and expound the regulatory mechanism by which LINC00491 affects the progression of HNSCC. RT-qPCR was utilized to analyze the expression of LINC00491 in HNSCC cell lines and the normal cell line. Functionally, we carried out a series of assays to measure cell proliferation, apoptosis, migration and invasion, such as EdU assay, colony formation, wound healing and western blot assays. Also, mechanism assays including RNA pull down and RIP were also implemented to investigate the interaction of LINC00491 and RNAs. As a result, we discovered that LINC00491 was highly expressed in HNSCC cells. In addition, LINC00491 depletion suppressed cell proliferation, migration and EMT process. Furthermore, we discovered that LINC00491 could bind to miR-508-3p. MiR-508-3p overexpression can restrain HNSCC cell growth. Importantly, miR-508-3p can target SATB homeobox 1 (SATB1) in HNSCC cells. Further, Wnt signaling pathway was proved to be activated by LINC00491 through SATB1 in HNSCC cells. In a word, LINC00491 accelerated HNSCC progression through regulating miR-508-3p/SATB1 axis and activating Wnt signaling pathway.


Asunto(s)
Neoplasias de Cabeza y Cuello , Proteínas de Unión a la Región de Fijación a la Matriz , MicroARNs , ARN Largo no Codificante , Humanos , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias de Cabeza y Cuello/genética , Proteínas de Unión a la Región de Fijación a la Matriz/genética , Proteínas de Unión a la Región de Fijación a la Matriz/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Factores de Transcripción/metabolismo , Vía de Señalización Wnt/genética
13.
Am J Pathol ; 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38040091

RESUMEN

Pathologic opening of the blood-brain barrier accelerates the progression of various neural diseases. Basigin, as an essential molecule for the opening of the blood-brain barrier, is a highly glycosylated transmembrane molecule specified in barrier-forming endothelial cells. This study analyzed the involvement of basigin in the regulation of the blood-brain barrier focusing on its glycosylation forms. First, basigin was found to be expressed as cell surface molecules with complex-type glycan as well as those with high-mannose-type glycan in barrier-forming endothelial cells. Monolayers of endothelial cells with suppressed expression of basigin with high-mannose-type glycan were then prepared and exposed to pathologic stimuli. These monolayers retained their barrier-forming properties even in the presence of pathologic stimuli, although their expression of basigin with complex-type glycan was maintained. Also in vivo, the blood-brain barrier in mice that were pretreated intravenously with endoglycosidase H was protected from the opening under pathologic stimuli. Furthermore, the pathologically opened blood-brain barrier in streptozotocin-injected mice was successfully closed by intravenous injection of endoglycosidase H. These results show that high-mannose-type glycan of the basigin molecule is essential for the opening of the blood-brain barrier and therefore a specific target for protection as well as restoration of pathologic opening of the blood-brain barrier.

14.
ACS Med Chem Lett ; 14(10): 1434-1440, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37849558

RESUMEN

The SARS-CoV-2 main protease (Mpro) has been proven to be a highly effective target for therapeutic intervention, yet only one drug currently holds FDA approval status for this target. We were inspired by a series of publications emanating from the Jorgensen and Anderson groups describing the design of potent, non-peptidic, competitive SARS-CoV-2 Mpro inhibitors, and we saw an opportunity to make several design modifications to improve the overall pharmacokinetic profile of these compounds without losing potency. To this end, we created a focused virtual library using reaction-based enumeration tools in the Schrödinger suite. These compounds were docked into the Mpro active site and subsequently prioritized for synthesis based upon relative binding affinity values calculated by FEP+. Fourteen compounds were selected, synthesized, and evaluated both biochemically and in cell culture. Several of the synthesized compounds proved to be potent, competitive Mpro inhibitors with improved metabolic stability profiles.

15.
Sensors (Basel) ; 23(15)2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37571438

RESUMEN

In real world industrial applications, the working environment of a bearing varies with time, and some unexpected vibration noises from other equipment are inevitable. In order to improve the anti-noise performance of neural networks, a new prediction model and a multi-channel sample generation method are proposed to address the above problem. First, we proposed a multi-channel sample representation method based on the envelope time-frequency spectrum of a different channel and subsequent three-dimensional filtering to extract the fault features of samples. Second, we proposed a multi-channel data fusion neural network (MCFNN) for bearing fault discrimination, where the dropout technique is used in the training process based on a dataset with a wide rotation speed and various loads. In a noise-free environment, our experimental results demonstrated that the proposed method can reach a higher fault classification of 99.00%. In a noisy environment, the experimental results show that for the signal-to-noise ratio (SNR) of 0 dB, the fault classification averaged 11.80% higher than other methods and 32.89% higher under a SNR of -4 dB.

16.
Front Plant Sci ; 14: 1149522, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37457334

RESUMEN

Plant development and pattern formation depend on diffusible signals and location cues. These developmental signals and cues activate intracellular downstream components through cell surface receptors that direct cells to adopt specific fates for optimal function and establish biological fitness. There may be a single-pole dual-control competing mode in controlling plant development and microbial infection. In plant development, paracrine signaling molecules compete with autocrine signaling molecules to bind receptors or receptor complexes, turn on antagonistic molecular mechanisms, and precisely regulate developmental processes. In the process of microbial infection, two different signaling molecules, competing receptors or receptor complexes, form their respective signaling complexes, trigger opposite signaling pathways, establish symbiosis or immunity, and achieve biological adaptation. We reviewed several "single-pole dual-control" competing modes, focusing on analyzing the competitive commonality and characterization of "single-pole dual-control" molecular mechanisms. We suggest it might be an economical protective mechanism for plants' sequentially and iteratively programmed developmental events. This mechanism may also be a paradigm for reducing internal friction in the struggle and coexistence with microbes. It provides extraordinary insights into molecular recognition, cell-to-cell communication, and protein-protein interactions. A detailed understanding of the "single-pole dual-control" competing mode will contribute to the discovery of more receptors or antagonistic peptides, and lay the foundation for food, biofuel production, and crop improvement.

18.
Lancet ; 401(10393): e21-e33, 2023 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-37321233

RESUMEN

BACKGROUND: The long-term health consequences of COVID-19 remain largely unclear. The aim of this study was to describe the long-term health consequences of patients with COVID-19 who have been discharged from hospital and investigate the associated risk factors, in particular disease severity. METHODS: We did an ambidirectional cohort study of patients with confirmed COVID-19 who had been discharged from Jin Yin-tan Hospital (Wuhan, China) between Jan 7 and May 29, 2020. Patients who died before follow-up; patients for whom follow-up would be difficult because of psychotic disorders, dementia, or readmission to hospital; those who were unable to move freely due to concomitant osteoarthropathy or immobile before or after discharge due to diseases such as stroke or pulmonary embolism; those who declined to participate; those who could not be contacted; and those living outside of Wuhan or in nursing or welfare homes were all excluded. All patients were interviewed with a series of questionnaires for evaluation of symptoms and health-related quality of life, underwent physical examinations and a 6-min walking test, and received blood tests. A stratified sampling procedure was used to sample patients according to their highest seven-category scale during their hospital stay as 3, 4, and 5-6, to receive pulmonary function test, high resolution CT of the chest, and ultrasonography. Enrolled patients who had participated in the Lopinavir Trial for Suppression of SARS-CoV-2 in China received SARS-CoV-2 antibody tests. Multivariable adjusted linear or logistic regression models were used to evaluate the association between disease severity and long-term health consequences. FINDINGS: In total, 1733 of 2469 discharged patients with COVID-19 were enrolled after 736 were excluded. Patients had a median age of 57·0 years (IQR 47·0-65·0) and 897 (52%) were male and 836 (48%) were female. The follow-up study was done from June 16 to Sept 3, 2020, and the median follow-up time after symptom onset was 186·0 days (175·0-199·0). Fatigue or muscle weakness (52%, 855 of 1654) and sleep difficulties (26%, 437 of 1655) were the most common symptoms. Anxiety or depression was reported among 23% (367 of 1616) of patients. The proportions of 6-min walking distance less than the lower limit of the normal range were 17% for those at severity scale 3, 13% for severity scale 4, and 28% for severity scale 5-6. The corresponding proportions of patients with diffusion impairment were 22% for severity scale 3, 29% for scale 4, and 56% for scale 5-6, and median CT scores were 3·0 (IQR 2·0-5·0) for severity scale 3, 4·0 (3·0-5·0) for scale 4, and 5·0 (4·0-6·0) for scale 5-6. After multivariable adjustment, patients showed an odds ratio (OR) of 1·61 (95% CI 0·80-3·25) for scale 4 versus scale 3 and 4·60 (1·85-11·48) for scale 5-6 versus scale 3 for diffusion impairment; OR 0·88 (0·66-1·17) for scale 4 versus scale 3 and OR 1·76 (1·05-2·96) for scale 5-6 versus scale 3 for anxiety or depression, and OR 0·87 (0·68-1·11) for scale 4 versus scale 3 and 2·75 (1·61-4·69) for scale 5-6 versus scale 3 for fatigue or muscle weakness. Of 94 patients with blood antibodies tested at follow-up, the seropositivity (96·2% vs 58·5%) and median titres (19·0 vs 10·0) of the neutralising antibodies were significantly lower compared with at the acute phase. 107 of 822 participants without acute kidney injury and with an estimated glomerular filtration rate (eGFR) of 90 mL/min per 1·73 m2 or more at acute phase had eGFR less than 90 mL/min per 1·73 m2 at follow-up. INTERPRETATION: At 6 months after acute infection, COVID-19 survivors were mainly troubled with fatigue or muscle weakness, sleep difficulties, and anxiety or depression. Patients who were more severely ill during their hospital stay had more severe impaired pulmonary diffusion capacities and abnormal chest imaging manifestations, and are the main target population for intervention of long-term recovery. FUNDING: National Natural Science Foundation of China, Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences, National Key Research and Development Program of China, Major Projects of National Science and Technology on New Drug Creation and Development of Pulmonary Tuberculosis, and Peking Union Medical College Foundation.


Asunto(s)
COVID-19 , Trastornos del Inicio y del Mantenimiento del Sueño , Humanos , Masculino , Femenino , Persona de Mediana Edad , Anciano , COVID-19/complicaciones , SARS-CoV-2 , Alta del Paciente , Estudios de Cohortes , Estudios de Seguimiento , Calidad de Vida , Fatiga
19.
Front Pharmacol ; 14: 1188725, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37266152

RESUMEN

Background: Copper as phytonutrient has powerful activity against health diseases. A newly discovered mechanism of cell death that affects energy metabolism by copper ("cuproptosis") can induce multiple cuproptosis-related genes. Hepatocellular carcinoma (HCC) is a poorly prognosed widespread cancer having danger of advanced metastasis. Therefore, earlier diagnosis followed by the specific targeted therapy are required for improved prognosis. The work herein constructed scoring system built on ten cuproptosis-related genes (CRGs) to predict progression of tumor and metastasis more accurately and test patient reaction toward immunotherapy. Methods: A comprehensive assessment of cuproptosis patterns in HCC samples from two databases and a real-world cohort was performed on ten CRGs, that were linked to immune cell infiltration signatures of TME (tumor microenvironment). Risk signatures were created for quantifying effect of cuproptosis on HCC, and the effects of related genes on cellular function of HCC were investigated, in addition to the effects of immunotherapy and targeted therapy drugs. Results: Two distinct cuproptosis-associated mutational patterns were identified, with distinct immune cell infiltration characteristics and survival likelihood. Studies have shown that assessment of cuproptosis-induced tumor mutational patterns can help predict tumor stage, phenotype, stromal activity, genetic diversity, and patient prognosis. High risk scores are characterized by lower survival and worse treatment with anti-PD-L1/CTAL4 immunotherapy and first-line targeted drugs. Cytological functional assays show that CDKN2A and GLS promote proliferation, migration and inhibit copper-dependent death of HCC cells. Conclusion: HCC patients with high-risk scores exhibit significant treatment disadvantage and survival rates. Cuproptosis plays a non-negligible role in the development of HCC. Quantifying cuproptosis-related designs of tumors will aid in phenotypic categorization, leading to efficient personalized and targeted therapeutics and precise prediction of prognosis and metastasis.

20.
Antiviral Res ; 216: 105657, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37369282

RESUMEN

Our previous study shows favipiravir and oseltamivir combination therapy may accelerate clinical recovery compared to oseltamivir monotherapy in severe influenza, but its effect on virological evolution and resistance mutation against oseltamivir is still unknown. In this study, we collected longitudinal respiratory samples from influenza patients who underwent combination therapy and applied them to next generation sequencing of the whole genome of the influenza A virus (IAV). We also included a cohort untreated with any antivirals to serve as the control. In total, 62 samples from 19 patients treated with combination therapy and 20 samples from 20 patients untreated were successfully sequenced. The nucleotide diversity in the whole genome of IAV in the combination group showed no difference compared to that in the control group (P > 0.05). Moreover, we observed 174 kinds of nonsynonymous nucleotide substitutions in patients with combination therapy, mostly in NA (n = 44) and HA (n = 43). Of them, the G→A transition was the dominant variant type (27%) and 46/174 (26%) was reported to have biological effects, such as increased pathogenicity and polymerase activity. Among the 29 mutations conferring reduction in oseltamivir sensitivity we investigated, H275Y was the only mutation detected in the 4 samples from 1 of 19 patients and demonstrated increasing frequency during the treatment. Mutations conferring favipiravir resistance were not observed. Our studies showed combination therapy of favipiravir and oseltamivir has little effect on virus nucleotide diversity, nor prevents the increase of oseltamivir-resistant variants.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Humana , Humanos , Oseltamivir/farmacología , Oseltamivir/uso terapéutico , Gripe Humana/tratamiento farmacológico , Virus de la Influenza A/genética , Farmacorresistencia Viral/genética , Antivirales/farmacología , Antivirales/uso terapéutico , Neuraminidasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...